Computational Fluid Dynamics Simulation of Combustion Efficiency for Full-Size Upstream Flare Experiments

Author:

Wang Anan1,Sadovnik Isaac1,Tao Chong1,Chow Jon1,Sui Lei1,Bottino Gerard1,Venuturumilli Raj2,Evans Peter2,Newman David2,Lowe Jon2,Liekens Johan2

Affiliation:

1. Baker Hughes, 1100 Technology Park Dr, Billerica, MA 01821, USA

2. BP, Sunbury on Thames, London TW16 7LN, UK

Abstract

Methane emissions from oil and gas production can occur throughout the value chain, but for many producers, one of the most significant sources is flaring. Understanding the influence of the operating conditions and the environmental factors the combustion efficiency and destruction and removal efficiency (CE/DRE) of flares is essential if their role in methane emissions, a potent but short-lived greenhouse gas, is to be better understood and mitigated. An industry-scale experimental study was focused on the emissions of un-assisted flares commonly encountered in upstream oil and gas production. This paper simulates two un-assisted flare tips combustions by using the commercial computational fluid dynamics (CFD) software package Fluent 21R2 to augment the physical experimental testing. Two three-dimensional (3D) flare tips models are built, and the k-omega SST turbulence model and flamelet generated manifold (FGM) combustion model are applied to simulate flaring combustion. The CFD model is first validated against full-scale industry flare tests that use extractive sampling of the combustion plume. CFD results are in good agreement with measured results when the vent gas net heating value (NHV) is greater than 300 BTU/SCF. Greater uncertainty exists for both CFD results and measured data if the NHV is less than 300 BTU/SCF. Then, the CFD model is extended to include high crosswind states up to 50 m/s that cannot be readily or safely examined empirically. The results emphasize the critical role of the vent gas net heating value (NHV) on flare combustion and crosswind in reducing the CE. The comparison helps pave the way for further use of CFD simulation to improve flare designs and modes of operation and supports the use of parametric models to track and report methane losses from flaring.

Funder

bp

Publisher

MDPI AG

Reference28 articles.

1. (2023, November 15). Available online: https://flaringmethanetoolkit.com/.

2. Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability;Etheridge;J. Geophys. Res. Atmos.,1998

3. (2023). Global Gas Flaring Tracker Report, World Bank Publications. Available online: https://thedocs.worldbank.org/en/doc/5d5c5c8b0f451b472e858ceb97624a18-0400072023/original/2023-Global-Gas-Flaring-Tracker-Report.pdf.

4. Inefficient and unlit natural gas flares both emit large quantities of methane;Plant;Science,2022

5. Flaring efficiencies and NO x emission ratios measured for offshore oil and gas facilities in the North Sea;Shaw;Atmos. Chem. Phys.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Application of a Parametric Model to Track Methane Emissions from Flares – New Insights from a Global Deployment Programme;SPE International Health, Safety, Environment and Sustainability Conference and Exhibition;2024-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3