Abstract
For inertial navigation systems (INS), as one of the major methods for underwater navigation, errors diverge over time. With the development of geophysical navigation technology, gravity navigation has become an effective method of navigation. Significant changes in the gravity characteristic of the matching region ensure that gravity matching navigation works effectively. In this paper, we combine artificial intelligence algorithms and statistical metrics to classify gravity-matching navigation regions. Firstly, this paper analyzes and extracts gravity anomaly data from a matching region in different ways. Then, a particle swarm optimization (PSO) algorithm is used to optimize the network weights of a back propagation (BP) NN. Finally, based on principal component analysis (PCA) theory and PSO-BP NN, this paper proposes the PPBA method to classify the matching area. Moreover, the Terrain Contour Matching (TERCOM) matching algorithm and gravity anomaly data from the Western Pacific are used to verify the classification performance of the PPBA method. The experiments prove that the PPBA method has a high classification accuracy, and the classification results are consistent with the matching navigation experimental results. This work can provide a reference for designing navigation regions and navigation routes for submarines.
Funder
Foundation of Strengthening Program Technology Field
National Natural Science Foundation of China
National Science Foundation for Outstanding Young Scholars
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献