Symmetric Reconstruction of Functional Liver Segments and Cross-Individual Correspondence of Hepatectomy

Author:

Le Doan Cong,Chansangrat JirapaORCID,Keeratibharat NattawutORCID,Horkaew ParamateORCID

Abstract

Accurate localization and analyses of functional liver segments are crucial in devising various surgical procedures, including hepatectomy. To this end, they require the extraction of a liver from computed tomography, and then the identification of resection correspondence between individuals. The first part is usually impeded by inherent deficiencies, as present in medical images, and vast anatomical variations across subjects. While the model-based approach is found viable to tackle both issues, it is often undermined by an inadequate number of labeled samples, to capture all plausible variations. To address segmentation problems by balancing between accuracy, resource consumption, and data availability, this paper presents an efficient method for liver segmentation based on a graph-cut algorithm. One of its main novelties is the incorporation of a feature preserving a metric for boundary separation. Intuitive anatomical constraints are imposed to ensure valid extraction. The second part involves the symmetric conformal parameterization of the extracted liver surface onto a genus-0 domain. Provided with a few landmarks specified on two livers, we demonstrated that, by using a modified Beltrami differential, not only could they be non-rigidly registered, but also the hepatectomy on one liver could be envisioned on another. The merits of the proposed scheme were elucidated by both visual and numerical assessments on a standard MICCAI SLIVER07 dataset.

Funder

Suranaree University of Technology

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference59 articles.

1. 3D Object Modeling—Issues and Techniques;Cretu,2003

2. Survey on Image Segmentation Techniques

3. 3D Liver Segmentation from CT Images Using a Level Set Method Based on a Shape and Intensity Distribution Prior;Altarawneh;Comput. Inf. Eng.,2015

4. Automatic liver segmentation method in CT images;Zayane;Image Process. Comput. Vis.,2011

5. Efficient liver segmentation in CT images based on graph cuts and bottleneck detection

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3