COVI3D: Automatic COVID-19 CT Image-Based Classification and Visualization Platform Utilizing Virtual and Augmented Reality Technologies

Author:

Benbelkacem Samir,Oulefki Adel,Agaian Sos,Zenati-Henda Nadia,Trongtirakul ThaweesakORCID,Aouam DjamelORCID,Masmoudi Mostefa,Zemmouri MohamedORCID

Abstract

Recently many studies have shown the effectiveness of using augmented reality (AR) and virtual reality (VR) in biomedical image analysis. However, they are not automating the COVID level classification process. Additionally, even with the high potential of CT scan imagery to contribute to research and clinical use of COVID-19 (including two common tasks in lung image analysis: segmentation and classification of infection regions), publicly available data-sets are still a missing part in the system care for Algerian patients. This article proposes designing an automatic VR and AR platform for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic data analysis, classification, and visualization to address the above-mentioned challenges including (1) utilizing a novel automatic CT image segmentation and localization system to deliver critical information about the shapes and volumes of infected lungs, (2) elaborating volume measurements and lung voxel-based classification procedure, and (3) developing an AR and VR user-friendly three-dimensional interface. It also centered on developing patient questionings and medical staff qualitative feedback, which led to advances in scalability and higher levels of engagement/evaluations. The extensive computer simulations on CT image classification show a better efficiency against the state-of-the-art methods using a COVID-19 dataset of 500 Algerian patients. The developed system has been used by medical professionals for better and faster diagnosis of the disease and providing an effective treatment plan more accurately by using real-time data and patient information.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3