Hybrid Techniques of X-ray Analysis to Predict Knee Osteoarthritis Grades Based on Fusion Features of CNN and Handcrafted

Author:

Khalid Ahmed1,Senan Ebrahim Mohammed2ORCID,Al-Wagih Khalil2ORCID,Ali Al-Azzam Mamoun Mohammad1,Alkhraisha Ziad Mohammad1

Affiliation:

1. Computer Department, Applied College, Najran University, Najran 66462, Saudi Arabia

2. Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Alrazi University, Sana’a, Yemen

Abstract

Knee osteoarthritis (KOA) is a chronic disease that impedes movement, especially in the elderly, affecting more than 5% of people worldwide. KOA goes through many stages, from the mild grade that can be treated to the severe grade in which the knee must be replaced. Therefore, early diagnosis of KOA is essential to avoid its development to the advanced stages. X-rays are one of the vital techniques for the early detection of knee infections, which requires highly experienced doctors and radiologists to distinguish Kellgren-Lawrence (KL) grading. Thus, artificial intelligence techniques solve the shortcomings of manual diagnosis. This study developed three methodologies for the X-ray analysis of both the Osteoporosis Initiative (OAI) and Rani Channamma University (RCU) datasets for diagnosing KOA and discrimination between KL grades. In all methodologies, the Principal Component Analysis (PCA) algorithm was applied after the CNN models to delete the unimportant and redundant features and keep the essential features. The first methodology for analyzing x-rays and diagnosing the degree of knee inflammation uses the VGG-19 -FFNN and ResNet-101 -FFNN systems. The second methodology of X-ray analysis and diagnosis of KOA grade by Feed Forward Neural Network (FFNN) is based on the combined features of VGG-19 and ResNet-101 before and after PCA. The third methodology for X-ray analysis and diagnosis of KOA grade by FFNN is based on the fusion features of VGG-19 and handcrafted features, and fusion features of ResNet-101 and handcrafted features. For an OAI dataset with fusion features of VGG-19 and handcrafted features, FFNN obtained an AUC of 99.25%, an accuracy of 99.1%, a sensitivity of 98.81%, a specificity of 100%, and a precision of 98.24%. For the RCU dataset with the fusion features of VGG-19 and the handcrafted features, FFNN obtained an AUC of 99.07%, an accuracy of 98.20%, a sensitivity of 98.16%, a specificity of 99.73%, and a precision of 98.08%.

Funder

Deanship of Scientific Research at Najran University, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3