Prognostic Factors for Mortality in Hepatocellular Carcinoma at Diagnosis: Development of a Predictive Model Using Artificial Intelligence

Author:

Martínez-Blanco Pablo1ORCID,Suárez Miguel123ORCID,Gil-Rojas Sergio1,Torres Ana María23,Martínez-García Natalia4ORCID,Blasco Pilar5,Torralba Miguel467ORCID,Mateo Jorge23

Affiliation:

1. Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain

2. Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain

3. Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain

4. Internal Medicine Unit, Guadalajara University Hospital, 19002 Guadalajara, Spain

5. Department of Pharmacy, General University Hospital, 46014 Valencia, Spain

6. Faculty of Medicine, Universidad de Alcalá de Henares, 28801 Alcalá de Henares, Spain

7. Translational Research Group in Cellular Immunology (GITIC), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain

Abstract

Background: Hepatocellular carcinoma (HCC) accounts for 75% of primary liver tumors. Controlling risk factors associated with its development and implementing screenings in risk populations does not seem sufficient to improve the prognosis of these patients at diagnosis. The development of a predictive prognostic model for mortality at the diagnosis of HCC is proposed. Methods: In this retrospective multicenter study, the analysis of data from 191 HCC patients was conducted using machine learning (ML) techniques to analyze the prognostic factors of mortality that are significant at the time of diagnosis. Clinical and analytical data of interest in patients with HCC were gathered. Results: Meeting Milan criteria, Barcelona Clinic Liver Cancer (BCLC) classification and albumin levels were the variables with the greatest impact on the prognosis of HCC patients. The ML algorithm that achieved the best results was random forest (RF). Conclusions: The development of a predictive prognostic model at the diagnosis is a valuable tool for patients with HCC and for application in clinical practice. RF is useful and reliable in the analysis of prognostic factors in the diagnosis of HCC. The search for new prognostic factors is still necessary in patients with HCC.

Funder

Fundación Investigación Hospital General Universitario de Valencia

Institute of Technology of University of Castilla-La Mancha

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3