A Novel Method for Assessing Risk-Adjusted Diagnostic Coding Specificity for Depression Using a U.S. Cohort of over One Million Patients

Author:

Glass Alexandra1,Melton Nalander C.2,Moore Connor1,Myrick Keyerra2,Thao Kola1,Mogaji Samiat1,Howell Anna1,Patton Kenneth1,Martin John3,Korvink Michael3ORCID,Gunn Laura H.124

Affiliation:

1. School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

2. Department of Public Health Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

3. ITS Data Science, Premier, Inc., Charlotte, NC 28277, USA

4. School of Public Health, Faculty of Medicine, Imperial College London, London W6 8RP, UK

Abstract

Depression is a prevalent and debilitating mental health condition that poses significant challenges for healthcare providers, researchers, and policymakers. The diagnostic coding specificity of depression is crucial for improving patient care, resource allocation, and health outcomes. We propose a novel approach to assess risk-adjusted coding specificity for individuals diagnosed with depression using a vast cohort of over one million inpatient hospitalizations in the United States. Considering various clinical, demographic, and socioeconomic characteristics, we develop a risk-adjusted model that assesses diagnostic coding specificity. Results demonstrate that risk-adjustment is necessary and useful to explain variability in the coding specificity of principal (AUC = 0.76) and secondary (AUC = 0.69) diagnoses. Our approach combines a multivariate logistic regression at the patient hospitalization level to extract risk-adjusted probabilities of specificity with a Poisson Binomial approach at the facility level. This method can be used to identify healthcare facilities that over- and under-specify diagnostic coding when compared to peer-defined standards of practice.

Publisher

MDPI AG

Reference30 articles.

1. ICD-10: History and Context;Hirsch;Am. J. Neuroradiol.,2016

2. Centers for Disease Control and Prevention (CDC) (2023, October 18). International Classification of Diseases, (ICD-10-CM/PCS) Transition-Background. CDC, Available online: https://www.cdc.gov/nchs/icd/icd10cm_pcs_background.htm.

3. The Discriminatory Cost of ICD-10-CM Transition between Clinical Specialties: Metrics, Case Study, and Mitigating Tools;Boyd;J. Am. Med. Inform. Assoc.,2013

4. Grasso, M.A., Dezman, Z.D.W., and Jerrard, D.A. (2022). AMIA Annual Symposium Proceedings, American Medical Informatics Association.

5. Zegan, J. (2023, October 18). Improving Specificity in ICD-10 Diagnosis Coding. American Health Information Management Association (AHIMA). Available online: https://library.ahima.org/doc?oid=302473.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3