Functional Connectivity Profiles of Ten Sub-Regions within the Premotor and Supplementary Motor Areas: Insights into Neurophysiological Integration

Author:

Alahmadi Adnan1ORCID

Affiliation:

1. Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

Objectives: This study aimed to comprehensively investigate the functional connectivity of ten sub-regions within the premotor and supplementary motor areas (Right and Left Premotor 6d1, 6d2, 6d3, and Right and Left pre-Supplementary Motor (presma) and SMA). Using advanced magnetic resonance imaging (MRI), the objective was to understand the neurophysiological integrative characteristics of these regions by examining their connectivity with eight distinct functional brain networks. While previous studies have largely treated these areas as homogeneous entities, there is a significant gap in our understanding of the specific roles and connectivity profiles of their distinct sub-regions. The goal was to uncover the roles of these regions beyond conventional motor functions, contributing to a more holistic understanding of brain functioning. Methods: The study involved 198 healthy volunteers, with the primary methodology being functional connectivity analysis using advanced MRI techniques. Ten sub-regions within the premotor and supplementary motor areas served as seed regions, and their connectivity with eight distinct brain regional functional networks, including the Sensorimotor, Dorsal Attention, Language, Frontoparietal, Default Mode, Cerebellar, Visual, and Salience networks, was investigated. This approach allowed for the exploration of synchronized activity between these critical brain areas, shedding light on their integrated functioning and relationships with other brain networks. Results: The study revealed a nuanced landscape of functional connectivity for the premotor and supplementary motor areas with the main functional brain networks. Despite their high functional connectedness within the motor network, these regions displayed diverse functional integrations with other networks. There was moderate connectivity with the Sensorimotor and Dorsal Attention networks, highlighting their roles in motor execution and attentional processes. However, connectivity with the Language, Frontoparietal, Default Mode, Cerebellar, Visual, and Salience networks was generally low, indicating a primary focus on motor-related tasks. Conclusions: This study emphasized the multifaceted roles of the sub-regions of the premotor and supplementary motor areas. Beyond their crucial involvement in motor functions, these regions exhibited varied functional integrations with different brain networks. The observed disparities, especially in the Sensorimotor and Dorsal Attention networks, indicated a nuanced and specialized involvement of these regions in diverse cognitive functions. By delineating the specific connectivity profiles of these sub-regions, this study addresses the existing knowledge gap and suggests unique and distinct roles for each brain area in sophisticated cognitive tasks beyond their conventional motor functions. The results suggested unique and distinct roles for each brain area in sophisticated cognitive tasks beyond their conventional motor functions. This study underscores the importance of considering the broader neurophysiological landscape to comprehend the intricate roles of these brain areas, contributing to ongoing efforts in unravelling the complexities of brain function.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3