Ultrafast Brain MRI at 3 T for MS: Evaluation of a 51-Second Deep Learning-Enhanced T2-EPI-FLAIR Sequence

Author:

Schuhholz Martin1,Ruff Christer1,Bürkle Eva1,Feiweier Thorsten2ORCID,Clifford Bryan3ORCID,Kowarik Markus4,Bender Benjamin1ORCID

Affiliation:

1. Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls University, University Hospital, 72076 Tübingen, Germany

2. Siemens Healthineers AG, 91052 Erlangen, Germany

3. Siemens Medical Solutions USA, Boston, MA 02478, USA

4. Department of Neurology and Stroke, Neurological Clinic, Eberhard Karls University, University Hospital, 72076 Tübingen, Germany

Abstract

In neuroimaging, there is no equivalent alternative to magnetic resonance imaging (MRI). However, image acquisitions are generally time-consuming, which may limit utilization in some cases, e.g., in patients who cannot remain motionless for long or suffer from claustrophobia, or in the event of extensive waiting times. For multiple sclerosis (MS) patients, MRI plays a major role in drug therapy decision-making. The purpose of this study was to evaluate whether an ultrafast, T2-weighted (T2w), deep learning-enhanced (DL), echo-planar-imaging-based (EPI) fluid-attenuated inversion recovery (FLAIR) sequence (FLAIRUF) that has targeted neurological emergencies so far might even be an option to detect MS lesions of the brain compared to conventional FLAIR sequences. Therefore, 17 MS patients were enrolled prospectively in this exploratory study. Standard MRI protocols and ultrafast acquisitions were conducted at 3 tesla (T), including three-dimensional (3D)-FLAIR, turbo/fast spin-echo (TSE)-FLAIR, and FLAIRUF. Inflammatory lesions were grouped by size and location. Lesion conspicuity and image quality were rated on an ordinal five-point Likert scale, and lesion detection rates were calculated. Statistical analyses were performed to compare results. Altogether, 568 different lesions were found. Data indicated no significant differences in lesion detection (sensitivity and positive predictive value [PPV]) between FLAIRUF and axially reconstructed 3D-FLAIR (lesion size ≥3 mm × ≥2 mm) and no differences in sensitivity between FLAIRUF and TSE-FLAIR (lesion size ≥3 mm total). Lesion conspicuity in FLAIRUF was similar in all brain regions except for superior conspicuity in the occipital lobe and inferior conspicuity in the central brain regions. Further findings include location-dependent limitations of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as artifacts such as spatial distortions in FLAIRUF. In conclusion, FLAIRUF could potentially be an expedient alternative to conventional methods for brain imaging in MS patients since the acquisition can be performed in a fraction of time while maintaining good image quality.

Funder

Open Access Publication Fund of the University of Tübingen

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3