In Vitro Diagnostic Assays for COVID-19: Recent Advances and Emerging Trends

Author:

Vashist Sandeep Kumar

Abstract

There have been tremendous advances in in vitro diagnostic (IVD) assays for coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The main IVD assays used for COVID-19 employ real-time reverse transcriptase polymerase chain reaction (RT-PCR) that takes a few hours. But the assay duration has been shortened to 45 min by Cepheid. Of interest is the point-of-care (POC) molecular assay by Abbott that decreased the assay duration to just 5 min. Most molecular tests have been approved by the United States Food and Drug Administration (FDA) under emergency use authorization (EUA) and are Conformité Européenne (CE) marked. A wide range of serology immunoassays (IAs) have also been developed that complement the molecular assays for the diagnosis of COVID-19. The most prominent IAs are automated chemiluminescent IA (CLIA), manual ELISA, and rapid lateral flow IA (LFIA), which detect the immunoglobulin M (IgM) and immunoglobulin G (IgG) produced in persons in response to SARS-CoV-2 infection. The ongoing research efforts and advances in complementary technologies will pave the way to new POC IVD assays in the coming months. However, the performance of IVD assays needs to be critically evaluated before they are employed for the clinical diagnosis of COVID-19.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference31 articles.

1. Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins Universityhttps://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

2. COVID-19 coronavirus Pandemichttps://www.worldometers.info/coronavirus/

3. The Novel Coronavirus Originating in Wuhan, China

4. A pneumonia outbreak associated with a new coronavirus of probable bat origin

5. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan

Cited by 267 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3