Histopathological Gastric Cancer Detection on GasHisSDB Dataset Using Deep Ensemble Learning

Author:

Yong Ming Ping1,Hum Yan Chai1,Lai Khin Wee2ORCID,Lee Ying Loong1,Goh Choon-Hian1ORCID,Yap Wun-She1ORCID,Tee Yee Kai1ORCID

Affiliation:

1. Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia

2. Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia

Abstract

Gastric cancer is a leading cause of cancer-related deaths worldwide, underscoring the need for early detection to improve patient survival rates. The current clinical gold standard for detection is histopathological image analysis, but this process is manual, laborious, and time-consuming. As a result, there has been growing interest in developing computer-aided diagnosis to assist pathologists. Deep learning has shown promise in this regard, but each model can only extract a limited number of image features for classification. To overcome this limitation and improve classification performance, this study proposes ensemble models that combine the decisions of several deep learning models. To evaluate the effectiveness of the proposed models, we tested their performance on the publicly available gastric cancer dataset, Gastric Histopathology Sub-size Image Database. Our experimental results showed that the top 5 ensemble model achieved state-of-the-art detection accuracy in all sub-databases, with the highest detection accuracy of 99.20% in the 160 × 160 pixels sub-database. These results demonstrated that ensemble models could extract important features from smaller patch sizes and achieve promising performance. Overall, our proposed work could assist pathologists in detecting gastric cancer through histopathological image analysis and contribute to early gastric cancer detection to improve patient survival rates.

Funder

Fundamental Research Grant Scheme

Universiti Tunku Abdul Rahman

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3