Dynamic Enhancement Pattern on CT for Predicting Pancreatic Neuroendocrine Neoplasms with Low PAX6 Expression: A Retrospective Observational Study

Author:

Kimura KoichiroORCID,Tsuchiya Junichi,Kitazume Yoshio,Kishino Mitsuhiro,Akahoshi Keiichi,Kudo Atsushi,Tanaka ShinjiORCID,Tanabe Minoru,Tateishi Ukihide

Abstract

Paired box 6 (PAX6) is a transcription factor that plays a critical role in tumor suppression, implying that the downregulation of PAX6 promotes tumor growth and invasiveness. This study aimed to examine dynamic computed tomography (CT) features for predicting pancreatic neuroendocrine neoplasms (Pan-NENs) with low PAX6 expression. We retrospectively evaluated 51 patients with Pan-NENs without synchronous liver metastasis to assess the pathological expression of PAX6. Two radiologists analyzed preoperative dynamic CT images to determine morphological features and enhancement patterns. We compared the CT findings between low and high PAX6 expression groups. Pathological analysis identified 11 and 40 patients with low and high PAX6 expression, respectively. Iso- or hypoenhancement types in the arterial and portal phases were significantly associated with low PAX6 expression (p = 0.009; p = 0.001, respectively). Low PAX6 Pan-NENs showed a lower portal enhancement ratio than high PAX6 Pan-NENs (p = 0.044). The combination based on enhancement types (iso- or hypoenhancement during arterial and portal phases) and portal enhancement ratio (≤1.22) had 54.5% sensitivity, 92.5% specificity, and 84.3% accuracy in identifying low PAX6 Pan-NENs. Dynamic CT features, including iso- or hypoenhancement types in the arterial and portal phases and lower portal enhancement ratio may help predict Pan-NENs with low PAX6 expression.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3