Magnifying Networks for Histopathological Images with Billions of Pixels
-
Published:2024-03-01
Issue:5
Volume:14
Page:524
-
ISSN:2075-4418
-
Container-title:Diagnostics
-
language:en
-
Short-container-title:Diagnostics
Author:
Dimitriou Neofytos12ORCID, Arandjelović Ognjen2ORCID, Harrison David J.34ORCID
Affiliation:
1. Maritime Digitalisation Centre, Cyprus Marine and Maritime Institute, Larnaca 6300, Cyprus 2. School of Computer Science, University of St Andrews, St Andrews KY16 9SX, UK 3. School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK 4. NHS Lothian Pathology, Division of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
Abstract
Amongst the other benefits conferred by the shift from traditional to digital pathology is the potential to use machine learning for diagnosis, prognosis, and personalization. A major challenge in the realization of this potential emerges from the extremely large size of digitized images, which are often in excess of 100,000 × 100,000 pixels. In this paper, we tackle this challenge head-on by diverging from the existing approaches in the literature—which rely on the splitting of the original images into small patches—and introducing magnifying networks (MagNets). By using an attention mechanism, MagNets identify the regions of the gigapixel image that benefit from an analysis on a finer scale. This process is repeated, resulting in an attention-driven coarse-to-fine analysis of only a small portion of the information contained in the original whole-slide images. Importantly, this is achieved using minimal ground truth annotation, namely, using only global, slide-level labels. The results from our tests on the publicly available Camelyon16 and Camelyon17 datasets demonstrate the effectiveness of MagNets—as well as the proposed optimization framework—in the task of whole-slide image classification. Importantly, MagNets process at least five times fewer patches from each whole-slide image than any of the existing end-to-end approaches.
Reference61 articles.
1. Deep Learning for Whole Slide Image Analysis: An Overview;Dimitriou;Front. Med.,2019 2. Cohen, S. (2021). Artificial Intelligence and Deep Learning in Pathology, Elsevier. 3. Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (2017). Proceedings of the Advances in Neural Information Processing Systems, Curran Associates, Inc. 4. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer;Bejnordi;JAMA,2017 5. Aresta, G., Araújo, T., Kwok, S., Chennamsetty, S.S., Safwan, M., Alex, V., Marami, B., Prastawa, M., Chan, M., and Donovan, M. (2018). BACH: Grand Challenge on Breast Cancer Histology Images. arXiv.
|
|