Magnifying Networks for Histopathological Images with Billions of Pixels

Author:

Dimitriou Neofytos12ORCID,Arandjelović Ognjen2ORCID,Harrison David J.34ORCID

Affiliation:

1. Maritime Digitalisation Centre, Cyprus Marine and Maritime Institute, Larnaca 6300, Cyprus

2. School of Computer Science, University of St Andrews, St Andrews KY16 9SX, UK

3. School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK

4. NHS Lothian Pathology, Division of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK

Abstract

Amongst the other benefits conferred by the shift from traditional to digital pathology is the potential to use machine learning for diagnosis, prognosis, and personalization. A major challenge in the realization of this potential emerges from the extremely large size of digitized images, which are often in excess of 100,000 × 100,000 pixels. In this paper, we tackle this challenge head-on by diverging from the existing approaches in the literature—which rely on the splitting of the original images into small patches—and introducing magnifying networks (MagNets). By using an attention mechanism, MagNets identify the regions of the gigapixel image that benefit from an analysis on a finer scale. This process is repeated, resulting in an attention-driven coarse-to-fine analysis of only a small portion of the information contained in the original whole-slide images. Importantly, this is achieved using minimal ground truth annotation, namely, using only global, slide-level labels. The results from our tests on the publicly available Camelyon16 and Camelyon17 datasets demonstrate the effectiveness of MagNets—as well as the proposed optimization framework—in the task of whole-slide image classification. Importantly, MagNets process at least five times fewer patches from each whole-slide image than any of the existing end-to-end approaches.

Publisher

MDPI AG

Reference61 articles.

1. Deep Learning for Whole Slide Image Analysis: An Overview;Dimitriou;Front. Med.,2019

2. Cohen, S. (2021). Artificial Intelligence and Deep Learning in Pathology, Elsevier.

3. Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (2017). Proceedings of the Advances in Neural Information Processing Systems, Curran Associates, Inc.

4. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer;Bejnordi;JAMA,2017

5. Aresta, G., Araújo, T., Kwok, S., Chennamsetty, S.S., Safwan, M., Alex, V., Marami, B., Prastawa, M., Chan, M., and Donovan, M. (2018). BACH: Grand Challenge on Breast Cancer Histology Images. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3