Multi-Classification of Breast Cancer Lesions in Histopathological Images Using DEEP_Pachi: Multiple Self-Attention Head

Author:

Ukwuoma Chiagoziem C.ORCID,Hossain Md AltabORCID,Jackson Jehoiada K.ORCID,Nneji Grace U.ORCID,Monday Happy N.ORCID,Qin Zhiguang

Abstract

Introduction and Background: Despite fast developments in the medical field, histological diagnosis is still regarded as the benchmark in cancer diagnosis. However, the input image feature extraction that is used to determine the severity of cancer at various magnifications is harrowing since manual procedures are biased, time consuming, labor intensive, and error-prone. Current state-of-the-art deep learning approaches for breast histopathology image classification take features from entire images (generic features). Thus, they are likely to overlook the essential image features for the unnecessary features, resulting in an incorrect diagnosis of breast histopathology imaging and leading to mortality. Methods: This discrepancy prompted us to develop DEEP_Pachi for classifying breast histopathology images at various magnifications. The suggested DEEP_Pachi collects global and regional features that are essential for effective breast histopathology image classification. The proposed model backbone is an ensemble of DenseNet201 and VGG16 architecture. The ensemble model extracts global features (generic image information), whereas DEEP_Pachi extracts spatial information (regions of interest). Statistically, the evaluation of the proposed model was performed on publicly available dataset: BreakHis and ICIAR 2018 Challenge datasets. Results: A detailed evaluation of the proposed model’s accuracy, sensitivity, precision, specificity, and f1-score metrics revealed the usefulness of the backbone model and the DEEP_Pachi model for image classifying. The suggested technique outperformed state-of-the-art classifiers, achieving an accuracy of 1.0 for the benign class and 0.99 for the malignant class in all magnifications of BreakHis datasets and an accuracy of 1.0 on the ICIAR 2018 Challenge dataset. Conclusions: The acquired findings were significantly resilient and proved helpful for the suggested system to assist experts at big medical institutions, resulting in early breast cancer diagnosis and a reduction in the death rate.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3