Predicting Cardiovascular Rehabilitation of Patients with Coronary Artery Disease Using Transfer Feature Learning

Author:

Torres Romina12ORCID,Zurita Christopher1ORCID,Mellado Diego2345ORCID,Nicolis Orietta1ORCID,Saavedra Carolina35ORCID,Tuesta Marcelo6ORCID,Salinas Matías345ORCID,Bertini Ayleen4ORCID,Pedemonte Oneglio7,Querales Marvin8ORCID,Salas Rodrigo2345ORCID

Affiliation:

1. Faculty of Engineering, Universidad Andres Bello, Viña del Mar 2531015, Chile

2. Millennium Institute for Intelligent Healthcare Engineering (iHealth), Santiago 7820436, Chile

3. Biomedical Engineering School, Faculty of Engineering, Universidad de Valparaíso, Valparaíso 2362905, Chile

4. Health Sciences and Engineering Doctorate Program, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2540064, Chile

5. Center for Research and Development in Health Engineering (CINGS-UV), Universidad de Valparaíso, Valparaíso 2362905, Chile

6. Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile

7. Fundación Cardiovascular Dr. Jorge Kaplan Mayer, Viña del Mar 2570017, Chile

8. Medical Technology School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso 2540064, Chile

Abstract

Cardiovascular diseases represent the leading cause of death worldwide. Thus, cardiovascular rehabilitation programs are crucial to mitigate the deaths caused by this condition each year, mainly in patients with coronary artery disease. COVID-19 was not only a challenge in this area but also an opportunity to open remote or hybrid versions of these programs, potentially reducing the number of patients who leave rehabilitation programs due to geographical/time barriers. This paper presents a method for building a cardiovascular rehabilitation prediction model using retrospective and prospective data with different features using stacked machine learning, transfer feature learning, and the joint distribution adaptation tool to address this problem. We illustrate the method over a Chilean rehabilitation center, where the prediction performance results obtained for 10-fold cross-validation achieved error levels with an NMSE of 0.03±0.013 and an R2 of 63±19%, where the best-achieved performance was an error level with a normalized mean squared error of 0.008 and an R2 up to 92%. The results are encouraging for remote cardiovascular rehabilitation programs because these models could support the prioritization of remote patients needing more help to succeed in the current rehabilitation phase.

Funder

Chilean ANID Grant FONDEF IDEA I+D 2019

CIDIS-UV 14, ANID FONDECYT

ANID—Millennium Science Initiative Program

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference37 articles.

1. Hypoglycaemia, cardiovascular disease, and mortality in diabetes: Epidemiology, pathogenesis, and management;Amiel;Lancet Diabetes Endocrinol.,2019

2. Ministerio de Salud (MINSAL) (2019). Departamento de Estadísticas e Información de Salud (DEIS). Indicadores Básicos de Salud en Chile, DEIS.

3. Consenso de rehabilitación cardiovascular y prevención secundaria de las Sociedades Interamericana y Sudamericana de Cardiología;Zeballos;Rev. Urug. Cardiol.,2013

4. Tessler, J., and Bordoni, B. (2019). Cardiac Rehabilitation, StatPearls Publishing LLC.

5. COVID-19 and Cardiovascular Disease: A Global Perspective;Pina;Curr. Cardiol. Rep.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3