White Blood Cells Classification Using Entropy-Controlled Deep Features Optimization

Author:

Ahmad Riaz,Awais MuhammadORCID,Kausar NabeelaORCID,Akram TallhaORCID

Abstract

White blood cells (WBCs) constitute an essential part of the human immune system. The correct identification of WBC subtypes is critical in the diagnosis of leukemia, a kind of blood cancer defined by the aberrant proliferation of malignant leukocytes in the bone marrow. The traditional approach of classifying WBCs, which involves the visual analysis of blood smear images, is labor-intensive and error-prone. Modern approaches based on deep convolutional neural networks provide significant results for this type of image categorization, but have high processing and implementation costs owing to very large feature sets. This paper presents an improved hybrid approach for efficient WBC subtype classification. First, optimum deep features are extracted from enhanced and segmented WBC images using transfer learning on pre-trained deep neural networks, i.e., DenseNet201 and Darknet53. The serially fused feature vector is then filtered using an entropy-controlled marine predator algorithm (ECMPA). This nature-inspired meta-heuristic optimization algorithm selects the most dominant features while discarding the weak ones. The reduced feature vector is classified with multiple baseline classifiers with various kernel settings. The proposed methodology is validated on a public dataset of 5000 synthetic images that correspond to five different subtypes of WBCs. The system achieves an overall average accuracy of 99.9% with more than 95% reduction in the size of the feature vector. The feature selection algorithm also demonstrates better convergence performance as compared to classical meta-heuristic algorithms. The proposed method also demonstrates a comparable performance with several existing works on WBC classification.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference45 articles.

1. A microfluidic device for simultaneous extraction of plasma, red blood cells, and on-chip white blood cell trapping;Kuan;Sci. Rep.,2018

2. Erythrocytes as a biological model for screening of xenobiotics toxicity;Farag;Chem. Biol. Interact.,2018

3. Automatic recognition of five types of white blood cells in peripheral blood;Rezatofighi;Comput. Med. Imaging Graph.,2011

4. Weatherspoon, D. (2022, November 22). What to Know about White Blood Cells. Available online: https://www.medicalnewstoday.com/articles/327446#types-and-function.

5. Scalable system for classification of white blood cells from Leishman stained blood stain images;Mathur;J. Pathol. Inform.,2013

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3