Affiliation:
1. Division of Cellular and Molecular Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City 852-8501, Japan
2. Department of Health Sciences, Unit of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City 852-8523, Japan
Abstract
Background: Recently, the investigation of cerebrospinal fluid (CSF) biomarkers for diagnosing human prion diseases (HPD) has garnered significant attention. Reproducibility and accuracy are paramount in biomarker research, particularly in the measurement of total tau (T-tau) protein, which is a crucial diagnostic marker. Given the global impact of the coronavirus disease pandemic, the frequency of measuring this protein using one of the world’s fully automated assays, chemiluminescent enzyme immunoassay (CLEA), has increased. At present, the diagnosis and monitoring of neurological diseases mainly rely on traditional methods, but their accuracy and responsiveness are limited. There is limited knowledge of the accuracy of CLEA in tau measurements. We aimed to measure T-tau protein using CLEA and to elucidate its merits and limitations. Methods: We randomly selected 60 patients with rapidly progressive dementia, using ELISA and CLEA analysis of cerebrospinal fluid specimens. Additionally, we used Western blotting to detect the presence of 14-3-3 protein and employed real-time quaking-induced conversion (RT-QuIC) assays to analyze the same set of samples. Furthermore, we examined the correlation coefficient between ELISA and CLEA results in a subset of 60 samples. Moreover, using CLEA, we evaluated the diurnal reproducibility, storage stability, dilutability, and freeze–thaw effects in three selected samples. Results: In 172 patients, 172 samples were extracted, with each patient providing only one sample, and a total of 88 (35 men and 53 women) tested positive for HPD in the RT-QuIC assay. In contrast, all CSF samples from the remaining 84 patients without HPD (50 men and 34 women) tested negative in the RT-QuIC assay. Both ELISA and CLEA showed perfect sensitivity and specificity (100%) in measuring T-tau protein levels. In addition, ELISA and CLEA are similar in terms of measurement sensitivity and marginal effect of detection extrema. CLEA analysis exhibited instability for certain samples with T-tau protein levels exceeding 2000 pg/mL, leading to low reproducibility during dilution analysis. Conclusions: Our findings indicate that CLEA outperforms ELISA in terms of diurnal reproducibility, storage stability, and freeze–thaw effects. However, ELISA demonstrated superior performance in the dilution assay. Therefore, it is imperative to develop innovative approaches for the dilution of biomarker samples for CLEA measurements during clinical trials.
Funder
Japan Agency for Medical Research and Development
Research Committee of Prion Disease and Slow Virus Infection
Research on Policy Planning and Evaluation for Rare and Intractable Diseases
Health and Labour Sciences Research Grants; the Research Committee of Surveillance and Infection Control of Prion Disease
Ministry of Health, Labour, and Welfare of Japan