Theory and Practice of Integrating Machine Learning and Conventional Statistics in Medical Data Analysis

Author:

Dhillon Sarinder KaurORCID,Ganggayah Mogana DarshiniORCID,Sinnadurai Siamala,Lio Pietro,Taib Nur Aishah

Abstract

The practice of medical decision making is changing rapidly with the development of innovative computing technologies. The growing interest of data analysis with improvements in big data computer processing methods raises the question of whether machine learning can be integrated with conventional statistics in health research. To help address this knowledge gap, this paper presents a review on the conceptual integration between conventional statistics and machine learning, focusing on the health research. The similarities and differences between the two are compared using mathematical concepts and algorithms. The comparison between conventional statistics and machine learning methods indicates that conventional statistics are the fundamental basis of machine learning, where the black box algorithms are derived from basic mathematics, but are advanced in terms of automated analysis, handling big data and providing interactive visualizations. While the nature of both these methods are different, they are conceptually similar. Based on our review, we conclude that conventional statistics and machine learning are best to be integrated to develop automated data analysis tools. We also strongly believe that machine learning could be explored by health researchers to enhance conventional statistics in decision making for added reliable validation measures.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3