Detecting Parkinson’s Disease through Gait Measures Using Machine Learning

Author:

Li Alex,Li Chenyu

Abstract

Parkinson’s disease (PD) is one of the most common long-term degenerative movement disorders that affects the motor system. This progressive nervous system disorder affects nearly one million Americans, and more than 20,000 new cases are diagnosed each year. PD is a chronic and progressive painful neurological disorder and usually people with PD live 10 to 20 years after being diagnosed. PD is diagnosed based on the identification of motor signs of bradykinesia, rigidity, tremor, and postural instability. Though several attempts have been made to develop explicit diagnostic criteria, this is still largely unrevealed. In this manuscript, we aim to build a classifier with gait data from Parkinson patients and healthy controls using machine learning methods. The classifier could help facilitate a more accurate and cost-effective diagnostic method. The input to our algorithm is the Gait in Parkinson’s Disease dataset published on PhysioNet containing force sensor data as the measurement of gait from 92 healthy subjects and 214 patients with idiopathic Parkinson’s Disease. Different machine learning methods, including logistic regression, SVM, decision tree, KNN were tested to output a predicted classification of Parkinson patients and healthy controls. Baseline models including frequency domain method can reach similar performance and may be another good approach for the PD diagnostics.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3