Tensor-Based Learning for Detecting Abnormalities on Digital Mammograms

Author:

Tzortzis Ioannis N.ORCID,Davradou AgapiORCID,Rallis Ioannis,Kaselimi MariaORCID,Makantasis KonstantinosORCID,Doulamis Anastasios,Doulamis NikolaosORCID

Abstract

In this study, we propose a tensor-based learning model to efficiently detect abnormalities on digital mammograms. Due to the fact that the availability of medical data is limited and often restricted by GDPR (general data protection regulation) compliance, the need for more sophisticated and less data-hungry approaches is urgent. Accordingly, our proposed artificial intelligence framework utilizes the canonical polyadic decomposition to decrease the trainable parameters of the wrapped Rank-R FNN model, leading to efficient learning using small amounts of data. Our model was evaluated on the open source digital mammographic database INBreast and compared with state-of-the-art models in this domain. The experimental results show that the proposed solution performs well in comparison with the other deep learning models, such as AlexNet and SqueezeNet, achieving 90% ± 4% accuracy and an F1 score of 84% ± 5%. Additionally, our framework tends to attain more robust performance with small numbers of data and is computationally lighter for inference purposes, due to the small number of trainable parameters.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference56 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Land Cover Classification With Local–Global Information Decoupling to Address Remote Sensing Anomalous Data;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

2. An integrated framework for classifying mammograms according to BIRADS scale and breast tissue density.;Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments;2023-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3