Methods of Visualizing the Results of an Artificial-Intelligence-Based Computer-Aided Detection System for Chest Radiographs: Effect on the Diagnostic Performance of Radiologists

Author:

Hong Sungho1ORCID,Hwang Eui Jin12ORCID,Kim Soojin1,Song Jiyoung1ORCID,Lee Taehee1ORCID,Jo Gyeong Deok1,Choi Yelim1ORCID,Park Chang Min123,Goo Jin Mo123ORCID

Affiliation:

1. Department of Radiology, Seoul National University Hospital, Seoul 03082, Republic of Korea

2. Department of Radiology, Seoul National University College of Medicine, Seoul 03082, Republic of Korea

3. Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03082, Republic of Korea

Abstract

It is unclear whether the visualization methods for artificial-intelligence-based computer-aided detection (AI-CAD) of chest radiographs influence the accuracy of readers’ interpretation. We aimed to evaluate the accuracy of radiologists’ interpretations of chest radiographs using different visualization methods for the same AI-CAD. Initial chest radiographs of patients with acute respiratory symptoms were retrospectively collected. A commercialized AI-CAD using three different methods of visualizing was applied: (a) closed-line method, (b) heat map method, and (c) combined method. A reader test was conducted with five trainee radiologists over three interpretation sessions. In each session, the chest radiographs were interpreted using AI-CAD with one of the three visualization methods in random order. Examination-level sensitivity and accuracy, and lesion-level detection rates for clinically significant abnormalities were evaluated for the three visualization methods. The sensitivity (p = 0.007) and accuracy (p = 0.037) of the combined method are significantly higher than that of the closed-line method. Detection rates using the heat map method (p = 0.043) and the combined method (p = 0.004) are significantly higher than those using the closed-line method. The methods for visualizing AI-CAD results for chest radiographs influenced the performance of radiologists’ interpretations. Combining the closed-line and heat map methods for visualizing AI-CAD results led to the highest sensitivity and accuracy of radiologists.

Funder

Korea Health Industry Development Institute

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3