Over-the-Counter Breast Cancer Classification Using Machine Learning and Patient Registration Records

Author:

Hanis Tengku MuhammadORCID,Ruhaiyem Nur Intan Raihana,Arifin Wan NorORCID,Haron Juhara,Wan Abdul Rahman Wan FaiziahORCID,Abdullah RosniORCID,Musa Kamarul ImranORCID

Abstract

This study aims to determine the feasibility of machine learning (ML) and patient registration record to be utilised to develop an over-the-counter (OTC) screening model for breast cancer risk estimation. Data were retrospectively collected from women who came to the Hospital Universiti Sains Malaysia, Malaysia for breast-related problems. Eight ML models were used: k-nearest neighbour (kNN), elastic-net logistic regression, multivariate adaptive regression splines, artificial neural network, partial least square, random forest, support vector machine (SVM), and extreme gradient boosting. Features utilised for the development of the screening models were limited to information in the patient registration form. The final model was evaluated in terms of performance across a mammographic density. Additionally, the feature importance of the final model was assessed using the model agnostic approach. kNN had the highest Youden J index, precision, and PR-AUC, while SVM had the highest F2 score. The kNN model was selected as the final model. The model had a balanced performance in terms of sensitivity, specificity, and PR-AUC across the mammographic density groups. The most important feature was the age at examination. In conclusion, this study showed that ML and patient registration information are feasible to be used as the OTC screening model for breast cancer.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference89 articles.

1. International variation in female breast cancer incidence and mortality rates;Cancer Epidemiol. Biomark. Prev.,2015

2. (2022, May 24). WHO Breast Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer.

3. Parks, R.M., Derks, M.G.M., Bastiaannet, E., and Cheung, K.L. (2018). Breast Cancer Management for Surgeons, Springer.

4. Breast Cancer Before Age 40 Years;Semin. Oncol.,2009

5. Epidemiological characteristics of and risk factors for breast cancer in the world;Breast Cancer Targets Ther.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Methods For Classification Of Breast Cancer Using Machine Learning Techniques;2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN);2023-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3