IsoMAG—An Automated System for the Immunomagnetic Isolation of Squamous Cell Carcinoma-Derived Circulating Tumor Cells

Author:

Gribko Alena,Stiefel JanisORCID,Liebetanz Lana,Nagel Sophie Madeleine,Künzel JulianORCID,Wandrey Madita,Hagemann JanORCID,Stauber Roland H.,Freese ChristianORCID,Gül DésiréeORCID

Abstract

Background: detailed information about circulating tumor cells (CTCs) as an indicator of therapy response and cancer metastasis is crucial not only for basic research but also for diagnostics and therapeutic approaches. Here, we showcase a newly developed IsoMAG IMS system with an optimized protocol for fully automated immunomagnetic enrichment of CTCs, also revealing rare CTC subpopulations. Methods: using different squamous cell carcinoma cell lines, we developed an isolation protocol exploiting highly efficient EpCAM-targeting magnetic beads for automated CTC enrichment by the IsoMAG IMS system. By FACS analysis, we analyzed white blood contamination usually preventing further downstream analysis of enriched cells. Results: 1 µm magnetic beads with tosyl-activated hydrophobic surface properties were found to be optimal for automated CTC enrichment. More than 86.5% and 95% of spiked cancer cells were recovered from both cell culture media or human blood employing our developed protocol. In addition, contamination with white blood cells was minimized to about 1200 cells starting from 7.5 mL blood. Finally, we showed that the system is applicable for HNSCC patient samples and characterized isolated CTCs by immunostaining using a panel of tumor markers. Conclusion: Herein, we demonstrate that the IsoMAG system allows the detection and isolation of CTCs from HNSCC patient blood for disease monitoring in a fully-automated process with a significant leukocyte count reduction. Future developments seek to integrate the IsoMAG IMS system into an automated microfluidic-based isolation workflow to further facilitate single CTC detection also in clinical routine.

Funder

Brigitte and Dr. Konstanze Wegener Stiftung

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3