Plasma Disappearance Rate of Indocyanine Green for Determination of Liver Function in Three Different Models of Shock

Author:

Mathes Alexander,Plata Christopher,Rensing Hauke,Kreuer Sascha,Fink Tobias,Raddatz Alexander

Abstract

The measurement of the liver function via the plasma disappearance rate of indocyanine green (PDRICG) is a sensitive bed-side tool in critical care. Yet, recent evidence has questioned the value of this method for hyperdynamic conditions. To evaluate this technique in different hemodynamic settings, we analyzed the PDRICG and corresponding pharmacokinetic models after endotoxemia or hemorrhagic shock in rats. Male anesthetized Sprague-Dawley rats underwent hemorrhage (mean arterial pressure 35 ± 5 mmHg, 90 min) and 2 h of reperfusion, or lipopolysaccharide (LPS) induced moderate or severe (1.0 vs. 10 mg/kg) endotoxemia for 6 h (each n = 6). Afterwards, PDRICG was measured, and pharmacokinetic models were analyzed using nonlinear mixed effects modeling (NONMEM®). Hemorrhagic shock resulted in a significant decrease of PDRICG, compared with sham controls, and a corresponding attenuation of the calculated ICG clearance in 1- and 2-compartment models, with the same log-likelihood. The induction of severe, but not moderate endotoxemia, led to a significant reduction of PDRICG. The calculated ICG blood clearance was reduced in 1-compartment models for both septic conditions. 2-compartment models performed with a significantly better log likelihood, and the calculated clearance of ICG did not correspond well with PDRICG in both LPS groups. 3-compartment models did not improve the log likelihood in any experiment. These results demonstrate that PDRICG correlates well with ICG clearance in 1- and 2-compartment models after hemorrhage. In endotoxemia, best described by a 2-compartment model, PDRICG may not truly reflect the ICG clearance.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3