Determining the Metabolic Processes of Metal-Tolerant Fungi Isolated from Mine Tailings for Bioleaching

Author:

Nkuna Rosina1ORCID,Matambo Tonderayi1ORCID

Affiliation:

1. Centre for Competence in Environmental Biotechnology, Department of Environmental Sciences, College of Animal and Environmental Science, University of South Africa, Florida Science Campus, Roodepoort 1709, South Africa

Abstract

This study examined the metal tolerance and organic acid-producing capabilities of fungal isolates from South African tailings to assess their potential for future bioleaching applications. Four isolates were chosen for additional examination based on their capacity to generate organic acids and tolerance to metals. In terms of tolerance to Al, Zn, Ni, and Cr, these four isolates—Trichoderma, Talaromyces, Penicillium_3, and Penicillium_6—displayed varying degrees of resistance, with Trichoderma displaying a better metal tolerance index. The growth rates under metal stress varied among the isolates, with Trichoderma displaying the highest growth rates. In high-performance liquid chromatography results, citric acid emerged as the primary organic acid produced by the four isolates, with Trichoderma achieving the highest yield in the shortest timeframe. Gas chromatography–mass spectrometry results showed that the citric acid cycle is one of the main pathways for organic acid production, though other pathways related to lipid biosynthesis and carbohydrate metabolism also play significant roles. Three compounds involved in furfural breakdown were abundant. Using KEGG, a link between these compounds and the citric acid cycle was established, where their breakdown generates an intermediate of the citric acid cycle.

Funder

National Research Foundation of South Africa

Department of Science and Innovation and the Technology Innovation Agency

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3