Affiliation:
1. Institute of Thermal, Environmental and Resources’ Process Engineering, TU Bergakademie Freiberg, 09596 Freiberg, Germany
2. Institute of Biosciences, TU Bergakademie Freiberg, 09596 Freiberg, Germany
Abstract
The winning of critical raw materials from secondary resources, e.g., from abandoned mines, mining residues, electronic waste or low-grade ores, is a potential source with promising outcomes due to innovative and more efficient extraction methods. The research and education mine “Reiche Zeche” at the TU Bergakademie Freiberg, Germany offers a scientific lab in a real application environment for an in-situ bioleaching section from a low-grade sulfide ore vein with on-site associated membrane downstream processing. The evaluation and resumption of previous research activities showed both the feasibility and the potential for further up-scaling. But there was also potential evaluated for improving the effectiveness, especially in terms of individual process elements within the leaching and membrane cycle as well as regarding microbiology. Based on this, further optimization was carried out and effectiveness was evaluated and compared to the prior state. The results regarding the leaching outcome proved that process optimization leads to stable and continuous leaching process operations as well as to improved and more favorable conditions for the microorganisms due to the implementation of a bioreactor and changing the whole leaching operation from a direct into an indirect process. Furthermore, cleaning in place (CIP) resulted in the maintenance of selectivity despite discontinuous membrane process operation.
Funder
AUDI Environmental Foundation