Process Optimization of an In-Situ Bioleaching Section with Associated Membrane Filtration in a Field Test Laboratory

Author:

Götze Katja1,Hedrich Sabrina2ORCID,Braeuer Andreas Siegfried1,Haseneder Roland1ORCID

Affiliation:

1. Institute of Thermal, Environmental and Resources’ Process Engineering, TU Bergakademie Freiberg, 09596 Freiberg, Germany

2. Institute of Biosciences, TU Bergakademie Freiberg, 09596 Freiberg, Germany

Abstract

The winning of critical raw materials from secondary resources, e.g., from abandoned mines, mining residues, electronic waste or low-grade ores, is a potential source with promising outcomes due to innovative and more efficient extraction methods. The research and education mine “Reiche Zeche” at the TU Bergakademie Freiberg, Germany offers a scientific lab in a real application environment for an in-situ bioleaching section from a low-grade sulfide ore vein with on-site associated membrane downstream processing. The evaluation and resumption of previous research activities showed both the feasibility and the potential for further up-scaling. But there was also potential evaluated for improving the effectiveness, especially in terms of individual process elements within the leaching and membrane cycle as well as regarding microbiology. Based on this, further optimization was carried out and effectiveness was evaluated and compared to the prior state. The results regarding the leaching outcome proved that process optimization leads to stable and continuous leaching process operations as well as to improved and more favorable conditions for the microorganisms due to the implementation of a bioreactor and changing the whole leaching operation from a direct into an indirect process. Furthermore, cleaning in place (CIP) resulted in the maintenance of selectivity despite discontinuous membrane process operation.

Funder

AUDI Environmental Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3