Abstract
To effectively maintain and analyze a large amount of real-time sensor data, one often uses a filtering technique that reflects characteristics of original data well. This paper proposes a novel method for recommending the measurement noise for Kalman filtering, which is one of the most representative filtering techniques. Kalman filtering corrects inaccurate values of input sensor data, and its filtering performance varies depending on the input noise parameters. In particular, if the noise parameters determined based on the user’s experience are incorrect, the accuracy of Kalman filtering may be reduced significantly. Based on this observation, this paper addresses how to determine the measurement noise variance, a major input parameter of Kalman filtering, by analyzing past sensor data and how to use the estimated noise to improve the filtering accuracy. More specifically, to estimate the measurement noise variance, two analytical methods are proposed: one a transform-based method using a wavelet transform and the other a learning-based method using a denoising autoencoder. Experimental results show that the proposed methods estimated the measurement noise variance accurately and were superior to the experience-based method in the filtering accuracy.
Funder
National Research Foundation of Korea
Korea Electric Power Corporation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献