Electrochemical Evaluation of the Effect of Different NaCl Concentrations on Low Alloy- and Stainless Steels under Corrosion and Erosion-Corrosion Conditions

Author:

Brownlie Frazer,Hodgkiess Trevor,Pearson Alastair,Galloway Alexander

Abstract

The main objective of this study was to assess the influence of salt concentration on the corrosion behaviour, including the role of hydrodynamic conditions, of two broad classes of ferrous engineering materials. These are comprised of alloys, typified by a low-alloy steel (UNS G43400) that corrodes actively in aqueous conditions and a range of passive-film-forming stainless steels (UNS S31600, UNS S15500 and UNS S32760). Corrosion monitoring employed electrochemical (potentiodynamic polarisation) techniques. Three concentrations of aerated sodium chloride were utilised: 0.05 wt% NaCl, 3.5 wt% NaCl and 10 wt% NaCl. In quiescent, liquid impingement and solid/liquid impingement conditions, the corrosion rate of the low-alloy steel was observed to peak at 3.5 wt% NaCl, followed by a reduction in 10 wt% NaCl solution. These findings expand the range of previously reported trends, focused on static conditions. Such corrosion rate/salinity trends were observed to be dictated by the progress of the anodic reaction rather than influence on the cathodic reaction. Detailed studies were undertaken using segmented specimens to facilitate comparisons of the influence of hydrodynamic variations on corrosion behavior; these revealed that such variations influence the corrosion rates of low-alloy steel to a much lesser extent than the effect of changes in salinity. For the stainless steels, in quiescent and flowing conditions, when surface passive films are stable, there was a constant increase in corrosion rate with salinity. In solid-liquid conditions, however, the periodic film-destruction/repassivation events resulted in a similar corrosion rate/salinity trend to that displayed by the low-alloy steel, but with a much larger effect of hydrodynamic conditions. Additonally, the study revealed an underlying influence of stainless steel composition that mirrored, to an extent, the corrosion behaviour in pitting/re-passivation situations

Publisher

MDPI AG

Subject

General Medicine

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3