Production of Biomodified Bleached Kraft Pulp by Catalytic Conversion Using Penicillium verruculosum Enzymes: Composition, Properties, Structure, and Application

Author:

Shevchenko Aleksandr R.,Tyshkunova Irina V.,Chukhchin Dmitry G.,Malkov Alexey V.,Toptunov Evgeniy A.ORCID,Telitsin Vadim D.,Rozhkova Aleksandra M.,Sinitsyna Olga A.ORCID,Gofman Iosif V.ORCID,Aksenov Andrey S.

Abstract

The global development of the bioeconomy is impossible without technologies for comprehensive processing of plant renewable resources. The use of proven pretreatment technologies raises the possibility of the industrial implementation of the enzymatic conversion of polysaccharides from lignocellulose considering the process’s complexity. For instance, a well-tuned kraft pulping produces a substrate easily degraded by cellulases and hemicelulases. Enzymatic hydrolysis of bleached hardwood kraft pulp was carried out using an enzyme complex of endoglucanases, cellobiohydrolases, β-glucosidases, and xylanases produced by recombinant strains of Penicillium verruculosum at a 10 FPU/g mixture rate and a 10% substrate concentration. As a result of biocatalysis, the following products were obtained: sugar solution, mainly glucose, xylobiose, xylose, as well as other minor reducing sugars; a modified complex based on cellulose and xylan. The composition of the biomodified kraft pulp was determined by HPLC. The method for determining the crystallinity on an X-ray diffractometer was used to characterize the properties. The article shows the possibility of producing biomodified cellulose cryogels by amorphization with concentrated 85% H3PO4 followed by precipitation with water and supercritical drying. The analysis of the enzymatic hydrolysate composition revealed the predominance of glucose (55–67%) among the reducing sugars with a maximum content in the solution up to 6% after 72 h. The properties and structure of the modified kraft pulp were shown to change during biocatalysis; in particular, the crystallinity increased by 5% after 3 h of enzymatic hydrolysis. We obtained cryogels based on the initial and biomodified kraft pulp with conversion rates of 35, 50, and 70%. The properties of these cryogels are not inferior to those of cryogels based on industrial microcrystalline cellulose, as confirmed by the specific surface area, degree of swelling, porosity, and SEM images. Thus, kraft pulp enzymatic hydrolysis offers prospects not only for producing sugar-rich hydrolysates for microbiological synthesis, but also cellulose powders and cryogels with specified properties.

Funder

Russian Science Foundation

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference56 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enzymatic Hydrolysis of Kraft and Sulfite Pulps: What Is the Best Cellulosic Substrate for Industrial Saccharification?;Fermentation;2023-10-27

2. БИОМОДИФИЦИРОВАННАЯ ЦЕЛЛЮЛОЗА КАК ПЕРСПЕКТИВНЫЙ МАТЕРИАЛ ДЛЯ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ;Технологии и оборудование химической, биотехнологической и пищевой промышленности;2023-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3