Pt-Based Electrocatalyst Modified by CsH2PO4/SiP2O7 for Electrochemical Oxidation of NH3 to H2 in Solid Acid Electrolysis Cell

Author:

Kim Jihoon1,Jang Daehee1,Choi Junil1,Maeng Junbeom1,Shin Hyun Ho1,Park Taiho1,Kim Won Bae12

Affiliation:

1. Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Gyeongbuk, Republic of Korea

2. Graduate Institute of Ferrous & Energy Materials Technology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Gyeongbuk, Republic of Korea

Abstract

Ammonia (NH3) has received much attention as a hydrogen carrier because it can be easily liquefied with a high hydrogen storage density and emits no greenhouse gas during the dihydrogen evolution process. The ammonia oxidation reaction (AOR) in an electrochemical system has an important merit in which a very high-purity dihydrogen gas can be obtained without an additional separation process that is typically needed for thermochemical decomposition processes. Herein, the electrochemical AOR was carried out in a solid acid electrolysis cell (SAEC) at an intermediate temperature around 250 °C, in which a solid composite of CsH2PO4 mixed with SiP2O7 was used as an electrolyte and Pt/C-based electrocatalysts were employed as the electrode materials of both anode and cathode. The Pt/C electrode material was modified with the CsH2PO4/SiP2O7 electrolyte in order to enhance the electrocatalytic activity for the AOR with an improved H2 production rate. Over the SAEC system reported here, a high AOR performance was obtained with a current density of 67.1 mA/cm2 and Faradaic efficiency (FE) of 98.2%. This study can suggest the significant potential of SAEC for the carbon-free H2 production from the selective electrochemical oxidation of NH3.

Funder

Ministry of Science and ICT

Ministry of Trade, Industry & Energy, Republic of Korea

Korean Government

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3