Highly Selective Transformation of CO2 + H2 into Para-Xylene via a Bifunctional Catalyst Composed of Cr2O3 and Twin-Structured ZSM-5 Zeolite

Author:

Lin Shiyuan1,He Ruosong1,Wang Wenhang12ORCID,Wang Yang12ORCID,Gu Yongqiang12,Liu Qiang3,Wu Mingbo1

Affiliation:

1. College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China

2. Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan

3. National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jinan 250014, China

Abstract

The abundant C1 source CO2 can be utilized to produce value-added chemicals through hydrogenation technology. A bifunctional catalyst consisting of reducible metal oxide Cr2O3 and acidic zeolite ZSM-5 was designed for the direct conversion of CO2 + H2 into valuable aromatics, especially para-xylene (PX), via the methanol-mediated pathway. The twin structure of ZSM-5 (ZSM-5T), with sinusoidal channels that are predominantly exposed to the external surface, enhances the possibility of the transformation of methanol into PX due to the favorable diffusion dynamic of PX in the sinusoidal channels. Via the bifunctional catalyst Cr2O3&ZSM-5T, a PX selectivity of 28.7% and PX space-time yield (STY) of 2.5 gCH2 h−1 kgcat−1 are achieved at a CO2 conversion rate of 16.5%. Furthermore, we rationally modify the ZSM-5T zeolite via Cu species doping and amorphous SiO2 shell coating (Cu-ZSM-5T@SiO2). After combining with the Cr2O3 catalytic component, the CO2 conversion (18.4%) and PX selectivity (33.8%) are increased to some extent, which systematically increases the STY of PX to 3.0 gCH2 h−1 kgcat−1. The physicochemical property of the acidic zeolite and the corresponding structure-function relationship in enhancing the PX productivity are discovered. Our work provides a novel catalyst design idea to boost PX synthesis performance from CO2 hydrogenation.

Funder

National Natural Science Foundation of China

Shandong Province Key Research Program

Science and Technology Innovation Project of the Shandong Energy Group Co., Ltd.

CNPC Innovation Foundation

Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3