Catalytic Hydrogenation of Anthracene on Binary (Bimetallic) Composite Catalysts

Author:

Muldakhmetov Zainulla M.1,Ordabaeva Aigul T.1ORCID,Meiramov Majit G.1,Gazaliev Arstan M.1,Kim Sergey V.1ORCID

Affiliation:

1. Institute of Organic Synthesis and Chemistry of Coal of Kazakhstan Republic, Alikhanov Str., 1, Karaganda 100000, Kazakhstan

Abstract

The catalytic activity of the binary composite catalysts of Fe2O3-CoO/CaA and Fe2O3-CoO/ZSM-5 was studied. They were obtained by impregnation of CaA and ZSM-5 zeolites with aqueous solutions of sulfates of iron (FeSO4·7H2O) and cobalt (CoSO4·7H2O). The total metal content was no more than 5%. Then, oxidizing burning at 720 °C for 60 min was performed to produce the metal oxides. It was found that the obtained Fe-Co/CaA catalyst contains iron and cobalt as CoFe2O4 compound, and the Fe-Co/ZSM-5 catalyst includes CoFe2O4 and CoFe. The phase composition of the obtained catalysts was detected by the X-ray diffraction analysis. The surface morphology was investigated by the electron microscopy. The elemental composition of the obtained catalysts was determined by energy dispersive spectroscopy with mapping and inductively coupled plasma atomic emission spectroscopy. The atomic absorption analysis by the IR-spectroscopy showed the shifts of absorption bands in the infrared spectra of the pure zeolites and with added Fe and Co. The catalytic hydrogenation of anthracene was performed to determine the catalytic properties of the obtained catalysts. It is one of the most common model compounds applied to investigate the efficiency of catalytic systems. The result of hydrogenation found that conversion of anthracene at 400 °C, initial pressure of 6 MPa and duration of 60 min using the Fe-Co/CaA catalytic system equaled to ~87%. However, hydrogenation products equaled to ~84%. Anthracene conversion using the Fe-Co/ZSM-5 catalytic system and the same conditions was ~91%; among them, hydrogenated derivatives were ~71%. The proposed method is characterized by its simple execution. The obtained catalysts are be slightly inferior to platinum and rhodium catalysts in the catalytic activity.

Funder

Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3