The Promotional Effect of Na on Ru for pH-Universal Hydrogen Evolution Reactions

Author:

Guo Bingxin1,Zhao Chengfei1,Zhou Yingshuang1,Guo Junjie2,Wei Zhongzhe3,Wang Jing1

Affiliation:

1. College of Materials and Environmental Engineering, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310018, China

2. Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China

3. Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China

Abstract

Alkali metals, as ideal electron donors, can effectively regulate the valence state distribution of the host metals. Nevertheless, no studies have reported the application of alkali metal promoters in the hydrogen evolution reaction (HER). Here, we designed an efficient and wide pH-universal hydrogen evolution catalyst that utilizes alkali metal to control the valence, size, and dispersion of Ru NPs. The experimental results reveal that the alkali metal additives contribute to the dispersion and stabilization of metallic Ru. More importantly, the interaction between Na and Ru regulates the distribution of Ru valence states and helps to form more active components of Ru0. Additionally, NaCl functioned as an in situ template to assist the construction of a porous carbon skeleton promotes mass transfer and exposes more active sites, further promoting the synergistic effect of Ru and Na. As a result, the optimal Ru0.3/C−800 delivers high efficiency for HER with an overpotential as low as 29 mV in 1.0 M KOH and 83 mV in 0.5 M H2SO4 under 10 mA cm−2. Particularly, the catalytic performance of Ru0.3/C−800 even outbalanced that of commercial Pt/C in an alkaline medium. This rational construction strategy opens up new avenues for obtaining superior pH-universal electrocatalysts.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3