Use of Bioprinted Lipases in Microwave-Assisted Esterification Reactions

Author:

Carvalho de Melo Jéssica Jéssi1,Passos da Silva Gardenia Laís1,Mota Danyelle Andrade1ORCID,de Souza Brandão Luma Mirely1ORCID,de Souza Ranyere Lucena12ORCID,Pereira Matheus M.3ORCID,Lima Álvaro Silva12,Soares Cleide Mara Faria12ORCID

Affiliation:

1. UNIT, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil

2. ITP, Institute of Technology and Research, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil

3. CICECO, Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal

Abstract

In this study, a comparative evaluation was performed in batch esterification reactions under conventional heating (CH) and assisted by microwave irradiation (MW) using bioprinted lipases. Microwave-irradiation-assisted reactions generally provide higher productivities and improve synthesis performance in terms of increased rate and reduced reaction times, resulting in higher interest yields in less time. Productivity was calculated with the enzymes: Burkholderia cepacia lipase (BCL), Candida rugosa lipase (CRL), and porcine pancreas lipase (PPL) using different fatty acids (lauric acid (12:0), myristic acid (14:0), palmitic acid (16:0), stearic acid (18:0), and oleic acid (18:1)) and alcohols at a molar ratio of 1:8. The microwave reactor was operated at a temperature of 45 °C, and power varied between 50 W and 200 W. Bioprinted BCL (bBCL) showed the highest productivity among the tested lipases. In the reaction with the best result, bBCL with lauric acid under MW, the reaction time decreased from 24 h (CH) to 25 min (MW) and the productivity increased 33 times compared with the reactions under CH. The increase in productivity demonstrates its activation that occurred as a result of conformational changes of the enzyme in the bioprinting process, confirmed by Fourier transform infrared (FTIR) spectrometric analysis, which reduces the content of bBCL α-helix with lauric acid. The biocatalyst showed high operational stability over eight cycles, while losing only 19% of its initial activity with half-life times of 12.8 batches. The storage time was five weeks, maintaining ≈80% activity. The results demonstrate the prospect of a new enzymatic route to obtain hyperactive catalysts, with the use of bioprinted lipases in esterification reactions under microwave irradiation, for the synthesis of esters with a view to large-scale industrial application.

Funder

National Council for Scientific and Technological Development [CNPq]

Superior Level Staff Improvement-Brazil [CAPES]

Foundation for Research and Technological Innovation Support of the State of Sergipe [FAPITEC/SE]

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3