Designed Synthesis of PDI/BiOCl-BiPO4 Composited Material for Boosted Photocatalytic Contaminant Degradation

Author:

Zhuang Huaqiang1,Wang Fulin2,Shi Kaiyang2,Yang Kai2ORCID

Affiliation:

1. College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China

2. School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

Abstract

Enhancing the photocatalytic performance for contaminant degradation to accelerate the large-scale application of photocatalysis still is an enduring challenge. Herein, ternary PDI/BiOCl-BiPO4 composited materials with the different contents of PDI were designed and constructed by the multi-step compound method. The tetracycline hydrochloride and rhodamine B were chosen as targeted pollutants to investigate the photocatalytic performance of PDI/BiOCl-BiPO4 composited materials. The structure and component of BiOCl-BiPO4 and PDI/BiOCl-BiPO4 samples were detailedly characterized by a sequence of physical and chemical characterizations. The optimized PDI/BiOCl-BiPO4 sample, namely PDI(5%)/BiOCl-BiPO4, exhibited the excellent photocatalytic activity for tetracycline hydrochloride and rhodamine B degradation. The major active species that were holes (h+) and superoxide radicals (•O2−) also can be determined in the photocatalytic degradation process by active species trapping experiments. Furthermore, the photoelectrochemical and fluorescence measurements manifest the crucial role of PDI material. It can reduce the recombination of photo-excited charge carrier and improve the separation and transfer of photo-generated electron-hole pairs, which is beneficial to the photocatalytic reaction process. It is anticipated that our work would provide a counterpart to prepare the high-efficiency composited material in heterogeneous photocatalysis.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Academic and Technical Leaders Training Program--Young Talents

Program of Qingjiang Excellent Young Talents, JXUST

Ganzhou Young Talents Program of Jiangxi Province

Postdoctoral Research Projects of Jiangxi Province in 2020

Natural Science Foundation of Fujian Province for Youths

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3