Prediction of Concrete Compressive Strength in Saline Soil Environments

Author:

Yang Deqiang,Yan Changwang,Liu Shuguang,Jia Zhirong,Wang Chunguang

Abstract

Saline soil in Western China contains high concentrations of chloride ions, sulfate ions, and other corrosive ions, and the performance of concrete will substantially deteriorate from exposure to this environment. Therefore, it is of great significance to study and predict the concrete compressive strength in saline soil environments. In this paper, the effects of corrosion on concrete were analyzed from the aspects of surface damage, damage depth, and X-ray diffraction (XRD) of the corrosion products. The effects of corrosion were quantified by damage depth and corrosion depth. Then, considering the corrosion effects combined with Fick’s diffusion law, a time-dependent model of concrete compressive strength and a time-dependent model of damage depth were established. The results show that the deterioration of concrete gradually developed from the surface to the interior, and that the interface of the concrete specimen was equivalent to three parts: a failure zone, a filling zone, and an undisturbed zone. The results also showed that the time-varying model of concrete compressive strength proposed by the author was fully applicable, with an error of less than five percent. The service life of concrete predicted by the damage depth was found to be about 253 months (21.1 years), and the service life predicted by the time-varying compressive strength model was about 187 months (15.6 years). Both prediction results were far less than the normal concrete service life of 50 years. In addition, the long-term compressive strength of the corroded concrete was about 90% of that of the noncorroded concrete, which did not deteriorate with the corrosion time.

Funder

National Natural Science Foundation of China

Natural Science Foundation of IMAR

Shandong Provincial Natural Science Foundation

Key Research and Development Program of Shandong Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3