Single Dense Layer of PEO Coating on Aluminum Fabricated by “Chain-like” Discharges

Author:

Zhu LiyeORCID,Zhang Wei,Liu Haitao,Liu Lei,Wang Fuhui,Qiao Ziping

Abstract

Reducing the loose-layer-to-dense-layer ratio in PEO coatings on aluminum and its alloys is the key to improving their corrosion resistance and expanding their applications in the aerospace industry and other fields. In this paper, we describe the discharge evolution during the PEO process in exhaustive detail and report the appearance of a novel “chain-like” discharge for the first time. We investigated the microstructure and composition of PEO coatings using a scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer (EDS) and an X-ray diffractometer (XRD). The results reflected that the coating composition changed from amorphous Al2O3 to crystalline γ-Al2O3 and α-Al2O3 phases with the evolution of the plasma spark discharge state. We evaluated the electrochemical behavior of the coatings using a potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. Under “chain-like” discharge, the icorr of the coating on Al was 8.564 × 10–9 A∙cm−2, which was five orders of magnitude lower than that of the sample without the PEO coating. Moreover, we evaluated the adhesion strength of the coatings at different stages using a pull-off test. The adhesion strength of the PEO coatings at stage V reached 70 MPa. Furthermore, the high content of α-Al2O3 increased the hardness of the coating to 2000 HV. Therefore, the “chain-like” discharge promoted the formation of a single dense layer with 2.8% porosity and that demonstrated excellent properties. We also propose a mechanism to explain the influence of the plasma spark discharge state on the microstructure and composition of the PEO coatings.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3