Design and Accuracy Analysis of a Micromachine Tool with a Co-Planar Driving Mechanism

Author:

Wang Shih-Ming,Ye Zhe-Zhi,Gunawan Hariyanto

Abstract

Due to the requirements of manufacturing miniaturized high-tech products, micromachining with micromachine tools has come to be regarded as an important technology. The main goal of this study is to build up the key technologies, including optimal structure and configuration design, synchronous driving control, analysis of optimal accuracy, in order to develop a low-cost and high-accuracy micromachine tool with a multi-degrees of freedom (DOF) platform with a co-plane synchronous driving mechanism. Due to the advantages of such a mechanism, the machine is able to possess a high feed resolution and high accuracy without the use of expensive drive components and high-end CNC controllers. Because of the no pile-up structure, the machine has less movement inertia effect, as well as the merits of light weight, high stiffness, and increased stability. Furthermore, the machine has more DOF, resulting in a better cutting performance than that of 3-DOF machine tools. To better understand the characteristics of major error sources of the machine in order to further enhance its accuracy, hybrid error analysis, kinematics analysis, and a volumetric error model were conducted. Finally, a prototype of the designed micromachine tool was built, and cutting experiments for accuracy calibration and verification were carried out using this machine. The results showed that the machine was able to effectively execute 4-DOF microcutting with positioning accuracy of 800 nm.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3