Abstract
In this study, we analyzed the total ionizing dose (TID) effect characteristics of p-type FinFET and Nanowire FET (NW-FET) according to the structural aspect through comparison of the two devices. Similar to n-type devices, p-type NW-FETs are less affected than FinFETs by the TID effect. For the inverter TID circuit simulation, both n- and p-types of FinFET and NW-FET were analyzed regarding the TID effect. The inverter operation considering the TID effect was verified using the Berkeley short-channel insulated-gate FET model (BSIM) common multi-gate (CMG) parameters. In addition, an inverter circuit composed of the NW-FET exhibited a smaller change by the TID than that of an inverter circuit composed of the FinFET. Therefore, the gate controllability of the gate-all-around (GAA) device had an excellent tolerance to not only short-channel effects (SCE) but also TID effects.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献