Abstract
This study focuses on evaluating the effect of the fineness of basaltic volcanic ash (VA) on the engineering properties of cement pozzolan mixtures. In this study, VA of two different fineness, i.e., VA fine (VF) and VA ultra-fine (VUF) and commercially available fly ash (FA) was used to partially replace cement. Including a control and a hybrid mix (10% each of VUF and FA), eleven mortar mixes were prepared with various percentages of VA and FA (10%, 20% and 30%) to partially replace cement. First, material characterization was performed by using X-ray florescence (XRF), X-ray powder diffraction (XRD), particle size analysis, and a modified Chappelle test. Then, the compressive strength development, alkali silica reactivity (ASR), and drying shrinkage of all mortar mixes were investigated. Finally, XRD analysis on paste samples of all mixes was performed to assess their pozzolanic reactivity at ages of 7 and 91 days. The results showed increased Chappelle reactivity values with an increase in the fineness of the VA. Mortars containing high percentages of VUF (20% and 30%) showed almost equal compressive strength compared to corresponding FA mortars at all ages, however, the hybrid mix (10% VUF + 10% FA) exhibited higher strength than that of the reference mix (100% cement), particularly, at 91 days. At low percentages (10%), ASR expansion in both VF and VUF mortars was higher compared to the corresponding FA mortar and the opposite behavior was observed at high percentages (20% and 30%). Among all the mixes including the control, mortar with VUF was found to be most effective in controlling drying shrinkages at all ages. The rate of consumption of calcium hydroxide (Ca(OH)2) for pastes containing VUF and FA was almost the same, while VF showed low Ca(OH)2 intensity. These results indicate that an increase in the fineness of VA significantly improvs performance, and therefore, it could be a feasible substitute for commercial admixtures in cement composites.
Funder
Deanship of Scientific Research, King Faisal University
Subject
General Materials Science
Reference64 articles.
1. The Cement Sustainability Initiative: Recycling Concrete-Summary;Klee,2009
2. Department of the Interior USGS;Suzette,2009
3. IEA-WBCSD, Cement Technology Roadmap 2009-Carbon emissions reductions up to 2050https://www.iea.org/publications/freepublications/publication/Cement.pdf
4. Impacts of cement industry on environment-an overview;Devi;Asia Pac. J. Res.,2017
5. A life-cycle assessment of Portland cement manufacturing: In the US cement industry;Huntzinger;Energy,2009
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献