Effect of Fineness of Basaltic Volcanic Ash on Pozzolanic Reactivity, ASR Expansion and Drying Shrinkage of Blended Cement Mortars

Author:

Khan KaffayatullahORCID,Amin Muhammad NasirORCID,Saleem Muhammad UmairORCID,Qureshi Hisham Jahangir,Al-Faiad Majdi Adel,Qadir Muhammad Ghulam

Abstract

This study focuses on evaluating the effect of the fineness of basaltic volcanic ash (VA) on the engineering properties of cement pozzolan mixtures. In this study, VA of two different fineness, i.e., VA fine (VF) and VA ultra-fine (VUF) and commercially available fly ash (FA) was used to partially replace cement. Including a control and a hybrid mix (10% each of VUF and FA), eleven mortar mixes were prepared with various percentages of VA and FA (10%, 20% and 30%) to partially replace cement. First, material characterization was performed by using X-ray florescence (XRF), X-ray powder diffraction (XRD), particle size analysis, and a modified Chappelle test. Then, the compressive strength development, alkali silica reactivity (ASR), and drying shrinkage of all mortar mixes were investigated. Finally, XRD analysis on paste samples of all mixes was performed to assess their pozzolanic reactivity at ages of 7 and 91 days. The results showed increased Chappelle reactivity values with an increase in the fineness of the VA. Mortars containing high percentages of VUF (20% and 30%) showed almost equal compressive strength compared to corresponding FA mortars at all ages, however, the hybrid mix (10% VUF + 10% FA) exhibited higher strength than that of the reference mix (100% cement), particularly, at 91 days. At low percentages (10%), ASR expansion in both VF and VUF mortars was higher compared to the corresponding FA mortar and the opposite behavior was observed at high percentages (20% and 30%). Among all the mixes including the control, mortar with VUF was found to be most effective in controlling drying shrinkages at all ages. The rate of consumption of calcium hydroxide (Ca(OH)2) for pastes containing VUF and FA was almost the same, while VF showed low Ca(OH)2 intensity. These results indicate that an increase in the fineness of VA significantly improvs performance, and therefore, it could be a feasible substitute for commercial admixtures in cement composites.

Funder

Deanship of Scientific Research, King Faisal University

Publisher

MDPI AG

Subject

General Materials Science

Reference64 articles.

1. The Cement Sustainability Initiative: Recycling Concrete-Summary;Klee,2009

2. Department of the Interior USGS;Suzette,2009

3. IEA-WBCSD, Cement Technology Roadmap 2009-Carbon emissions reductions up to 2050https://www.iea.org/publications/freepublications/publication/Cement.pdf

4. Impacts of cement industry on environment-an overview;Devi;Asia Pac. J. Res.,2017

5. A life-cycle assessment of Portland cement manufacturing: In the US cement industry;Huntzinger;Energy,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3