Forecasting of Short-Term Daily Tourist Flow Based on Seasonal Clustering Method and PSO-LSSVM

Author:

Li Keqing,Liang Changyong,Lu Wenxing,Li Chu,Zhao Shuping,Wang Binyou

Abstract

The accurate prediction of tourist flow is essential to appropriately prepare tourist attractions and inform the decisions of tourism companies. However, tourist flow in scenic spots is a dynamic trend with daily changes, and specialized methods are necessary to measure it accurately. For this purpose, a tourist flow forecasting method is proposed in this research based on seasonal clustering. The experiment employs the K-means algorithm considering seasonal variations and the particle swarm optimization-least squares support vector machine (PSO-LSSVM) algorithm to forecast the tourist flow in scenic spots. The LSSVM is also used to compare the performance of the proposed model with that of the existing ones. Experiments based on a dataset comprising the daily tourist data for Mountain Huangshan during the period between 2014 and 2017 are conducted. Our results show that seasonal clustering is an effective method to improve tourist flow prediction, besides, the accuracy of daily tourist flow prediction is significantly improved by nearly 3 percent based on the hybrid optimized model combining seasonal clustering. Compared with other algorithms which provide predictions at monthly intervals, the method proposed in this research can provide more timely analysis and guide professionals in the tourism industry towards better daily management.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference44 articles.

1. Global Economic Impact & Trends 2020,2020

2. Safety Forecasting and Early Warning of Highly Aggregated Tourist Crowds in China

3. China Domestic Tourism Development Report 2020http://www.ctaweb.org/html/2020-9/2020-9-14-13-2-83232.html

4. Influencing factors of water resources security in water shortage mountain resorts;Wang;J. Arid Land Resour. Environ.,2014

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3