A Large-Scale Deep-Learning Approach for Multi-Temporal Aqua and Salt-Culture Mapping

Author:

Diniz CesarORCID,Cortinhas Luiz,Pinheiro Maria Luize,Sadeck Luís,Fernandes Filho Alexandre,Baumann Luis R. F.,Adami MarcosORCID,Souza-Filho Pedro Walfir M.ORCID

Abstract

Aquaculture and salt-culture are relevant economic activities in the Brazilian Coastal Zone (BCZ). However, automatic discrimination of such activities from other water-related covers/uses is not an easy task. In this sense, convolutional neural networks (CNN) have the advantage of predicting a given pixel’s class label by providing as input a local region (named patches or chips) around that pixel. Both the convolutional nature and the semantic segmentation capability provide the U-Net classifier with the ability to access the “context domain” instead of solely isolated pixel values. Backed by the context domain, the results obtained show that the BCZ aquaculture/saline ponds occupied ~356 km2 in 1985 and ~544 km2 in 2019, reflecting an area expansion of ~51%, a rise of 1.5× in 34 years. From 1997 to 2015, the aqua-salt-culture area grew by a factor of ~1.7, jumping from 349 km2 to 583 km2, a 67% increase. In 2019, the Northeast sector concentrated 93% of the coastal aquaculture/salt-culture surface, while the Southeast and South sectors contained 6% and 1%, respectively. Interestingly, despite presenting extensive coastal zones and suitable conditions for developing different aqua-salt-culture products, the North coast shows no relevant aqua or salt-culture infrastructure sign.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference50 articles.

1. Fishery and Aquaculture Statistics—2017,2019

2. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals,2018

3. The State of World Fisheries and Aquaculture 2020,2020

4. Aquaculture: Relevance, distribution, impacts and spatial assessments – A review

5. Status and distribution of mangrove forests of the world using earth observation satellite data

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3