Safety Analysis of Synergetic Operation of Backfilling the Open Pit Using Tailings and Excavating the Ore Deposit Underground

Author:

Zhang Qinli,Zhang Bingyi,Chen Qiusong,Wang Daolin,Gao Xiang

Abstract

The transition from open pit mining to underground mining is essential for mineral resources to achieve deep excavation. Recently, cemented paste backfill (CPB) has been proposed as a novel technology to achieve open pit backfill (OPB). The proposed method not only eliminates the danger of the open-pit slope but also reduces the disposal of waste tailings. In order to ensure safe mining during the synergetic operation of OPB and underground mining, it is of great significance to improve this technology. In the present study, an open-pit metal mine in Anhui Province was taken as the research object. Then, the safety of underground stope roofs, underground backfill pillars, and open-pit slopes was evaluated during OPB. To this end, numerical simulations were performed and experiments were conducted on a similar physical model. Accordingly, the backfill mechanical parameters were optimized. The obtained results show that backfill height exerts the most significant effect on the safety of roofs and underground backfill pillars, accompanied by small displacements along the vertical direction during the backfill process. Moreover, concentration was observed at the foot of the slope, while the overall structure remained stable with no considerable displacement. The overall safety factors met the safety requirements. Based on the obtained results, the optimal foundation strength, foundation height, backfill strength and backfill height were 4 MPa, 10 m, 1.5 MPa, and 120 m, respectively. Moreover, it was concluded that displacements in the abovementioned three regions tend to be stable when the backfill height exceeds 150 m without damage. The present article provides a certain theoretical and application guideline for OPB practices in similar metal mines and suggests possibilities for cleaner production.

Funder

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation Project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3