Abstract
Assessing transport CO2 emissions is important in the development of low-carbon strategies, but studies based on mixed land use are rare. This study assessed CO2 emissions from passenger transport in traffic analysis zones (TAZs) at the community level, based on a combination of the mixed-use development model and the vehicle emission calculation model. Based on mixed land use and transport accessibility, the mixed-use development model was adopted to estimate travel demand, including travel modes and distances. As a leading low-carbon city project of international cooperation in China, Shenzhen International Low-Carbon City Core Area was chosen as a case study. The results clearly illustrate travel demand and CO2 emissions of different travel modes between communities and show that car trips account for the vast majority of emissions in all types of travel modes in each community. Spatial emission differences are prominently associated with inadequately mixed land use layouts and unbalanced transport accessibility. The findings demonstrate the significance of the mixed land use and associated job-housing balance in reducing passenger CO2 emissions from passenger transport, especially in per capita emissions. Policy implications are given based on the results to facilitate sophisticated transport emission control at a finer spatial scale. This new framework can be used for assessing the impacts of urban planning on transport emissions to promote sustainable urbanization in developing countries.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
The project of Shenzhen Low Carbon City Big Data Engineering Laboratory organized by the Development and Reform Commission of Shenzhen Municipality
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Reference55 articles.
1. Fossil CO2 Emissions of all World Countries-2018 Report;Muntean,2018
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献