Structural, Electrical, and Electrochemical Properties of a Na2O-V2O5 Ceramic Nanocomposite as an Active Cathode Material for a Na-Ion Battery

Author:

Ibrahim Ahmed1ORCID,Watanabe Satoshi1,Razum Marta2,Pavić Luka2ORCID,Homonnay Zoltán3,Kuzmann Ernő3ORCID,Hassaan Mohamed Yousry4,Kubuki Shiro1ORCID

Affiliation:

1. Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan

2. Division of Materials Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia

3. Institute of Chemistry, Eötvos Loránd University, 1117 Budapest, Hungary

4. Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt

Abstract

In this paper, a relationship between the structure and the electrical properties of a nanocrystalline composite ceramics xNa2O·(100 − x)V2O5 with ‘x’ of 5, 15, 25, 35, and 45 mol%, abbreviated as xNV, was investigated by X-ray diffractometry (XRD), X-ray absorption spectroscopy (XAS), Cyclic Voltammetry (CV), Electrochemical impedance spectroscopy (EIS), and cathode active performance in Na-ion battery (SIB). For the expected sodium vanadium bronzes (NaxV2O5) precipitation, the preparation of xNV was performed by keeping the system in the molten state at 1200 °C for one hour, followed by a temperature decrease in the electric furnace to room temperature at a cooling rate of 10 °C min−1. XRD patterns of the 15NV ceramic exhibited the formation of Na0.33V2O5 and NaV3O8 crystalline phases. Moreover, the V K-edge XANES showed that the absorption edge energy of ceramics 15NV recorded at 5479 eV is smaller than that of V2O5 at 5481 eV, evidently indicating a partial reduction from V5+ to V4+ due to the precipitation of Na0.33V2O5. In the cyclic voltammetry, reduction peaks of 15NV were observed at 1.12, 1.78 V, and 2.69 V, while the oxidation peak showed up only at 2.36 V. The values of the reduction peaks were related to the NaV3O8 crystalline phase. Moreover, the diffusion coefficient of Na+ (DNa+) gradually decreased from 8.28 × 10−11 cm2 s−1 to 1.23 × 10−12 cm2 s−1 with increasing Na2O content (x) from 5 to 45 mol%. In the evaluation of the active cathode performance of xNV in SIB, ceramics 15NV showed the highest discharge capacity 203 mAh g−1 at a current rate of 50 mA g−1. In the wider voltage range from 0.8 to 3.6 V, the capacity retention was maintained at 50% after 30 cycles, while it was significantly improved to 90% in the narrower voltage range from 1.8 to 4.0 V, although the initial capacity decreased to 56 mAh g−1. It is concluded that the precipitation of the Na0.33V2O5 phase improved the structural and electrical properties of 15NV, which provides a high capacity for the Na-ion battery when incorporated as a cathode active material.

Funder

Tokyo Metropolitan Government

KAKENHI

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3