Investigation of Supercapacitor Electrodes Based on MIL-101(Fe) Metal-Organic Framework: Evaluating Electrochemical Performance through Hydrothermal and Microwave-Assisted Synthesis

Author:

Akkinepally Bhargav12ORCID,Kumar Gara Dheeraj3ORCID,Reddy I. Neelakanta1ORCID,Rao H. Jeevan4ORCID,Nagajyothi Patnamsetty Chidanandha1,Alothman Asma A.5ORCID,Alqahtani Khadraa N.5,Hassan Ahmed M.6,Javed Muhammad Sufyan7ORCID,Shim Jaesool1

Affiliation:

1. School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

2. School of General Education, Yeungnam University, Gyeongsan 38541, Republic of Korea

3. Department of Aerospace, JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru 562112, India

4. Amity Institute of Aerospace Engineering, Amity University Uttar Pradesh, Noida 201313, India

5. Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

6. Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt

7. School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

Abstract

Supercapacitors have garnered substantial interest owing to their capacity to deliver power effectively for short-term applications. However, current supercapacitors suffer from limited stability and low-capacity storage. Metal-organic frameworks (MOFs) have emerged as a promising solution due to their high surface area and abundant active redox sites. MOF-based electrodes combined with aqueous based electrolytes have shown potential to enhance supercapacitor performance. While there is limited literature on MIL-101(Fe) MOF-based electrodes, a comparative study was conducted to investigate the supercapacitor performance of MIL-101(Fe) electrodes synthesized using hydrothermal and microwave-assisted processes. Processing parameters, such as the method used, alter the microstructure, morphology, and uniformity of supramolecular chemistry, impacting electrochemical characteristics. This study aimed to determine the active redox reactions, chemical stability, surface area, adsorption characteristics, and electrochemical characteristics of the electrodes. The electrodes from hydrothermal synthesis [MF(ht)] exhibited excellent electrochemical activity in comparison to the microwave-assisted [MF(m)] electrodes in the three-electrode configuration. At a high current density of 7 A/g, the MF(ht) electrode displayed a remarkable specific capacitance of 775.6 F/g and a good cyclic stability (82% @ 10 A/g) after 5000 galvanostatic charge–discharge cycles. At a current density of 1 A/g, the two-electrode configuration of MF(ht) yielded a high energy density of 74.7 Wh/kg at a power density of 2160 W/kg and a decent cyclic stability after 5000 cycles. The results suggest that the MF(ht) electrodes possess remarkable electrochemical properties that make them a promising candidate for advanced applications in energy storage.

Funder

King Saud University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3