Laser Scanning Based Surface Flatness Measurement Using Flat Mirrors for Enhancing Scan Coverage Range

Author:

Li Fangxin,Li Heng,Kim Min-Koo,Lo King-Chi

Abstract

Surface flatness is an important indicator for the quality assessment of concrete surfaces during and after slab construction in the construction industry. Thanks to its speed and accuracy, terrestrial laser scanning (TLS) has been popularly used for surface flatness inspection of concrete slabs. However, the current TLS based approach for surface flatness inspection has two primary limitations associated with scan range and occluded area. First, the areas far away from the TLS normally suffer from inaccurate measurement caused by low scan density and high incident angle of laser beams. Second, physical barriers such as interior walls cause occluded areas where the TLS is not able to scan for surface flatness inspection. To address these limitations, this study presents a new method that employs flat mirrors to increase the measurement range with acceptable measurement accuracy and make possible the scanning of occluded areas even when the TLS is out of sight. To validate the proposed method, experiments on two laboratory-scale specimens are conducted, and the results show that the proposed approach can enlarge the scan range from 5 m to 10 m. In addition, the proposed method is able to address the occlusion problem of the previous methods by changing the laser beam direction. Based on these results, it is expected that the proposed technique has the potential for accurate and efficient surface flatness inspection in the construction industry.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference31 articles.

1. BS 8204-Screeds, Bases and In Situ Flooring,2009

2. ACI 117-06-Specifications for Tolerances for Concrete Construction and Materials and Commentary,2006

3. ACI 302.1R-96 -Guide for Concrete Floor and Slab Construction,1997

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3