MFANet: A Multi-Level Feature Aggregation Network for Semantic Segmentation of Land Cover

Author:

Chen Bingyu,Xia MinORCID,Huang Junqing

Abstract

Detailed information regarding land utilization/cover is a valuable resource in various fields. In recent years, remote sensing images, especially aerial images, have become higher in resolution and larger span in time and space, and the phenomenon that the objects in an identical category may yield a different spectrum would lead to the fact that relying on spectral features only is often insufficient to accurately segment the target objects. In convolutional neural networks, down-sampling operations are usually used to extract abstract semantic features, which leads to loss of details and fuzzy edges. To solve these problems, the paper proposes a Multi-level Feature Aggregation Network (MFANet), which is improved in two aspects: deep feature extraction and up-sampling feature fusion. Firstly, the proposed Channel Feature Compression module extracts the deep features and filters the redundant channel information from the backbone to optimize the learned context. Secondly, the proposed Multi-level Feature Aggregation Upsample module nestedly uses the idea that high-level features provide guidance information for low-level features, which is of great significance for positioning the restoration of high-resolution remote sensing images. Finally, the proposed Channel Ladder Refinement module is used to refine the restored high-resolution feature maps. Experimental results show that the proposed method achieves state-of-the-art performance 86.45% mean IOU on LandCover dataset.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3