Metabolomic Analysis Reveals the Association of Severe Bronchopulmonary Dysplasia with Gut Microbiota and Oxidative Response in Extremely Preterm Infants

Author:

Chiu Chih-Yung12ORCID,Chiang Ming-Chou3,Chiang Meng-Han2,Lien Reyin3,Fu Ren-Huei3,Hsu Kai-Hsiang3ORCID,Chu Shih-Ming3

Affiliation:

1. Division of Pediatric Pulmonology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan

2. Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan

3. Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan

Abstract

Bronchopulmonary dysplasia (BPD) is a chronic lung disease mainly affecting premature infants needing ventilation or oxygen for respiratory distress. This study aimed to evaluate the molecular linkages for BPD in very and extremely preterm infants using a metabolomics-based approach. A case-control study of enrolling preterm infants born before 32 weeks gestational age (GA) was prospectively performed. These preterm infants were subsequently stratified into the following two groups for further analysis: no or mild BPD, and moderate or severe BPD based on the 2019 NICHD criteria. Urinary metabolomic profiling was performed using 1H-Nuclear magnetic resonance (NMR) spectroscopy coupled with partial least squares discriminant analysis (PLS-DA) at a corrected age of 6 months. Metabolites significantly differentially related to GA and BPD severity were performed between groups, and their roles in functional metabolic pathways were also assessed. A total of 89 preterm infants born before 32 weeks gestation and 50 infants born at term age (above 37 completed weeks’ gestation) served as controls and were enrolled into the study. There were 21 and 24 urinary metabolites identified to be significantly associated with GA and BPD severity, respectively (p < 0.05). Among them, N-phenylacetylglycine, hippurate, acetylsalicylate, gluconate, and indoxyl sulfate were five metabolites that were significantly higher, with the highest importance in both infants with GA < 28 weeks and those with moderate to severe BPD, whereas betaine and N,N-dimethylglycine were significantly lower (p < 0.05). Furthermore, ribose and a gluconate related pentose phosphate pathway were strongly associated with these infants (p < 0.01). In conclusion, urinary metabolomic analysis highlights the crucial role of gut microbiota dysbiosis in the pathogenesis of BPD in preterm infants, accompanied by metabolites related to diminished antioxidative capacity, prompting an aggressive antioxidation response in extremely preterm infants with severe BPD.

Funder

Chang Gung Memorial Hospital, Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3