Affiliation:
1. Department of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150006, China
Abstract
On account of the external disturbances and difficult maneuverability of a hovercraft, this paper devises a safety-guaranteed, robust, nonlinear, path-following control strategy of a hovercraft targeted for unknown dynamics, unavailable velocity, and unknown external ocean disturbances. Firstly, for the sake of accurately observing unavailable lumped disturbances and unavailable velocity measurements, a finite-time extended state observer (FTESO) is proposed. Secondly, a line-of-sight (LOS) guidance law constructed with a bounded-gain-forgetting (BGF) adaptive estimator is devised to follow the desired path while considering external environmental disturbances accurately, in which the tracking errors and the parameter estimation are both proven to be bounded. In addition, for the sake of safety, a safety-guaranteed auxiliary system that can constrain the drift angle during the hovercraft’s navigation is proposed. Thirdly, the robust, nonlinear, path-following controllers achieved high tracking performance with the constructed safety-guaranteed compensation backstepping method. Finally, according to the Lyapunov and homogeneous theories, the observation error can be guaranteed to zero and the tracking error can converge to an arbitrarily small region near zero in finite time. Numerical simulations illustrate the effectiveness for the proposed robust, nonlinear, path-following scheme.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献